欢迎您来到佛山市优合化工科技有限公司网站
全国服务热线
技术经理:周工
技术经理:周工
技术总监:向工
客服经理:李工
0757-2553-8809
联系我们
友情链接:
关注我们
快捷导航
粤ICP备14095298号
版权所有:佛山市优合化工科技有限公司
新闻资讯
高性能氮化硅陶瓷需要那种粉体?
对于制备抗弯强度大且热导率高的陶瓷基板和高性能轴承球来说,粉体不仅需要纯度高,而且还需要满足低氧、超细、高α相等指标。因为这些指标都会直接决定基板和陶瓷球中的缺陷(晶格氧、气孔)、杂质以及晶界尺寸,从而影响热导率和抗弯强度。

日本宇部(UBE)探究了粉体质量对陶瓷热导率和抗弯强度的影响行为,发现当粉体粒径D50为0.4~1.5μm,比表面积(BET)为4.0~9.0m2/g,α相含量>95%(质量),O含量为0.2%~0.95%(质量),C含量<0.2%(质量),F含量<0.003%(质量),Cl含量<0.01%(质量),以及Ca+Fe+Al等其他金属总杂质<0.05%(质量)时,具有较高的烧结活性,可制备出热导率>100W/(m·K),抗弯强度大(>1000MPa)的高性能基板[商业化应用的最低热导率和抗弯强度为90W/(m·K)和600MPa]。
02
粉体质量与其制备方法密切相关
通常,采用不同方法制备的Si3N4粉体具有不同的比表面积,对Si3N4陶瓷的最终性能也有一定的影响。
硅粉氮化法的基本原理是硅粉和氮气、氨气等含氮气体在高温下进行反应生成氮化硅,该方法具有产品性能稳定性好、成本低等优点,是应用最广泛、技术最成熟的氮化硅粉体批量化生产方法。德国的ALZ、瑞典的VESTA等国际著名粉体厂商均采用该方法批量化生产氮化硅粉。
碳热还原法的原料是一定纯度的石英粉和高纯炭粉(焦炭或木炭),将原料混合均匀后放入反应炉内通入氮气或者氨气加热到1400℃进行反应,二氧化硅会先和碳进行还原反应,生成单质硅后再和氮气或者氨气进行反应得到氮化硅。碳热还原二氧化硅法的优点是所得到的微粉粒径小且纯度高,且含有大量的α相,反应过程简单,比直接氮化法的速度快,效率高。该制备方法的缺点是二氧化硅很难完全还原氮化,残存二氧化硅会极大影响陶瓷的高温性能。
液相反应法(又称硅亚胺化学分解法)制备氮化硅粉的过程是将四氯化硅在零度干燥的乙烷中与一定量的无水氨气发生反应,生成高纯度的亚氨基硅和氨基硅,其在一定高温下进行热分解生成无定型的氮化硅,无定型的氮化硅进一步热处理转化成稳定α相的氮化硅。此方法最大的特点是化学反应激烈,生产速度快,可以获得高纯度氮化硅粉。但该方法制备难度大,技术门槛高,对原料的纯度要求高,其难点在于不易获得稳定的固态亚氨基硅(Si(NH)2)。日本UBE公司是最早,也是唯一使用该方法规模化生产出性能优异、质量稳定的氮化硅粉体产品的厂商。
自蔓延高温合成法(SHS)是近年来兴起的一种制备无机化合物高温材料新方法。其原理是依靠外部能量将金属硅粉引燃,由于硅和氮气的反应是放热反应,反应物一旦被引燃,便会自动向尚未反应的区域传播,直至反应完全。该方法合成氮化硅粉体反应速度快,粉体纯度高,成本低廉,但制备过程可控性差,氮化硅粉体α相含量低
推荐产品
联系我们